Hydrogen Sulfide in the RVLM and PVN has No Effect on Cardiovascular Regulation
نویسندگان
چکیده
Hydrogen sulfide (H(2)S) is now recognized as an important signaling molecule and has been shown to have vasodilator and cardio-protectant effects. More recently it has been suggested that H(2)S may also act within the brain to reduce blood pressure (BP). In the present study we have demonstrated the presence of the H(2)S-producing enzyme, cystathionine-β-synthase (CBS) in the rostral ventrolateral medulla (RVLM), and the hypothalamic paraventricular nucleus (PVN), brain regions with key cardiovascular regulatory functions. The cardiovascular role of H(2)S was investigated by determining the BP, heart rate (HR), and lumbar sympathetic nerve activity (LSNA) responses elicited by a H(2)S donor sodium hydrogen sulfide (NaHS) or inhibitors of CBS, microinjected into the RVLM and PVN. In anesthetized Wistar Kyoto rats bilateral microinjections of NaHS (0.2-2000 pmol/side) into the RVLM did not significantly affect BP, HR, or LSNA, compared to vehicle. Similarly, when the CBS inhibitors, amino-oxyacetate (AOA; 0.1-1.0 nmol/side) or hydroxylamine (HA; 0.2-2.0 nmol/side), were administered into the RVLM, there were no significant effects on the cardiovascular variables compared to vehicle. Microinjections into the PVN of NaHS, HA, and AOA had no consistent significant effects on BP, HR, or LSNA compared to vehicle. We also investigated the cardiovascular responses to NaHS microinjected into the RVLM and PVN in spontaneously hypertensive rats. Again, there were no significant effects on BP, HR, and LSNA. Together, these results suggest that H(2)S in the RVLM and PVN does not have a major role in cardiovascular regulation.
منابع مشابه
Cardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla
Objective(s): Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostr...
متن کاملEffect of Reversible Inactivation of the Kolliker Fuse Nucleus on Basal Blood Pressure and Heart Rate in Anesthetized Rat
Introduction: Several supra spinal areas such as rostral ventrolateral medulla (RVLM) area are involved in basic cardiovascular regulation. The Kolliker— Fuse nucleus (KF) is located in pons and is heavily connected with RVLM. The cardiovascular effect of KF nucleus has been shown and it is suggested that KF is involved in sympathetic vasomotor tone and basic cardiovascular regulation. Therefor...
متن کاملSuperoxide Mediates Depressive Effects Induced by Hydrogen Sulfide in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats
Hydrogen sulfide (H2S) plays a crucial role in the regulation of blood pressure and oxidative stress. In the present study, we tested the hypothesis that H2S exerts its cardiovascular effects by reducing oxidative stress via inhibition of NADPH oxidase activity in the rostral ventrolateral medulla (RVLM). We examined cell distributions of cystathionine-β-synthase (CBS) and effects of H2S on rea...
متن کاملEffect of GABAA Receptors in the Rostral Ventrolateral Medulla on Cardiovascular Response to the Activation of the Bed Nucleus of the Stria Terminalis in Female Ovariectomized Rats
Background: The areas of the bed nucleus of the stria terminalis (BST) with a high density of estrogen receptors are involved in cardiovascular regulation and send axonal projections to the rostroventrolateral medulla (RVLM). We aimed to find the contribution of the RVLM to cardiovascular responses elicited by glutamate microinjection into the BST. Methods: Experiments were done in α-ch...
متن کاملCystathionine-β-Synthase Gene Transfer Into Rostral Ventrolateral Medulla Exacerbates Hypertension via Nitric Oxide in Spontaneously Hypertensive Rats Xiao-Cui Duan,1,2 Shang-Yu Liu,1 Rong Guo,3 Lin Xiao,1 Hong-Mei Xue,1 Qi Guo,1 Sheng Jin,1 and Yu-Ming Wu1
Hydrogen sulfide (H2S) is an endothelium-derived hyperpolarizing factor that enhances the relaxation of the peripheral vasculature,1–3 recent studies4–6 have also reported its physiological functions in the central nervous system. In mammalian tissues, H2S is produced through degradation of l-cysteine mainly by 2 main enzymes: cystathionineβ-synthase (CBS) and cystathionine-γ-lyase. CBS is prim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2011